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The Existence of Smooth Densities for the
Prediction Filtering and Smoothing Problems
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Universitat Konstanz
D7750 Konstanz

FR. Germany

ABSTRACT

Using a simple martingale representation result a conditional version of the Malli-

avin calculus is developed. Under H6rmander's conditions on the coefficient vector fields

2/ we-shew the filtering, smoothing and prediction problems have CO0 density solutions.

1. INTRODUCTION. Following Malliavin's remarkable work [61 there have been

other treatments of the Malliavin calculus, including those of Bismut [1], Stroock 18]

and Norris [7]. A particularly readable account can be found in the paper of Zakai [9].

In [2] Bismut and Michel developed a conditional version of the Malliavin calculus to

show the existence of a conditional density in filtering and smoothing problems. Using

a simple and natural expression for the integrand in a stochastic integral the authors [4]

have been able to give an elementary proof of the existence of a density for a diffusion,

'Research partially supported by the Air Force Ofce of Scientific Research, United States Air Force, under

grant AFOSR-86-0332 and European Office of Aerospace Research and Development, London, England
2 Research partially supported by NSERC Grant A 7964

The authors are grateful to Provessor E. Pardoux for pointing out an error in an earlier version of the

paper
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under H~rmander's conditions for the coefficient vector fields. The homogeneous chaos

expansion of the random variable is also obtained in [4]. The objective of this paper

is to present a conditional version of the results of 141 and, following the exposition of

Zakai, simplify some of the results of Bismut and Michel.

In this paper the following system of stochastic differential equations is considered:

dx = Xo(x,y)dt + X,(x,y)dw' + I (x,y)dB' + k (Xy)h'(z,y)dt.

dy = Yo(y)dt + Y,(y)dBi + Y,(y)hi(x, y)dt.

Here w = (w, ... , wK) and B = (BI, ... , B") are independent Brownian

motions. The process x represents the unobserved signal process, while y represents the

observation process. If {Yt} is the right continuous, complete filtration

generated by {yt} then the filtering problem discusses E[xtlYt], the prediction problem

discusses E[ztIY.] when a < t, and the smoothing problem discusses E[ztIY. when

s> t.

Using the simple martingale representation result of [41] a conditional version of

the Malliavin calculus is developed in section 4. Suppose T > t and let c be any smooth

function on Rd with bounded derivatives of all orders. In section 5 we show that if the

inverse of the conditional Malliavin matrix M belongs to V. (fl) for all p, 1 < p < oo,

then

IE[ (t)IYT] < K(y) sup Ic(x)l
8XZ ZERd

for all multi-indices a = (al, ... , as,) where K(y) is a YT-measurable random variable

which is finite a.s. The delicate and technical sufficient conditions for the integrability

of M - P are not discussed in this paper.
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This inequality, using simple Fourier analysis, implies that the random variable

xt has almost surely a conditional density given YT, which is infinitely differentiable.

Using Jensen's inequality we can immediately deduce

IE[ -T(xt)IY]._K'(y) sup Ic(z)I

where s > t or a < t. Therefore, the smoothing, filtering and prediction problems for

xt, given Y,, have, almost surely, smooth conditional density solutions.

3



2. STOCHASTIC FLOWS

We recall in this section the properties of stochastic flows, and in particular those

relating to 'lower triangular' systems obtained by Norris [7]. Let wt = (wit, ... , Wt

t > 0, be an n-dimensional Brownian motion on (fl, F,P). Write {Ft) for the right

continuous, complete filtration generated by w. Suppose X 0 , X1, ... , Xm are smooth

vector fields on [0,oo] x R d , all of whose derivatives are bounded. Then from Bismut

[1], or Carverhill and Elworthy [3], we quote the following result:

THEOREM 2.1. There is a map : lx [0, oo) x [0, co) x Rd --+ Rd such that

i) for 0 < a < t and x E Rd e.,t (x) is the essentially unique solution of the stochastic

differential equation

de,,t (x) = Xo(t, C,,t (x))dt + Xi(t, C,4 (x))dw' (2.1)

with &,, (x) = x.

(Note the Einstein summation convention is used).

ii) for each w, a, t the map e.,e (.) is COO on Rd with a first derivative, the Jacobian,

_-_
-- Dat, which satisfies

xax.
dD,,t = 0"-t s x)D t+ -- t . x)D, w 22

with initial condition D.,, = I, the d x d identity matrix.

REMARKS 2.2. Note that (2.2) is obtained formally by differentiating (2.1). In fact

equations for higher derivaties are obtained by further differentiation. However,

if we consider the enlarged system given by (2.1) and (2.2) the coefficients are not

4
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bounded, because of the linear appearance of D.,t on the right of (2.2). However,

Norris [71 has extended the results of Theorem 2.1 to such systems. To state Norris'

results we first define a class of 'lower triangular' coefficients.

DEFINITION 2.3. For positive integers a,d,dj, ... , dk write Sa(di, ... , dk) for the set

of X E C* R,RR) of the form

x(1) (x) X1

= forz= ) (2.3)x~k) (X,, 2,.. k) .1

where Rd is identified with Rd, x ... x R 4 , zj E R 1 and the X satisfy

IIXIIs(am, = sup (sup Vsup "DX )
zERf -,< , (1 + M "f*) 1 uI9,5k

< f0 for all positive integers N. (2.4)

Write S(dj, ... , dk)= U So(d, ... , dt).

REMARKS 2.4. Note equations (2.1) and (2.2) can be considered as a single system

whose coefficients are not bounded, but are in S(d, d2 ). The final supremum on the right

of (2.4) implies the first derivatives of X) are bounded, as are the first derivatives D,

in the 'new' variable z i of X") (z 1 , ... , z'). This means X() is allowed linear growth

in zj , a situation illustrated in (2.2). We quote from Norris the following extension of

Theorem 2.1.

THEOREM 2.5. Let X 0 , X 1, ... , Xm E Sa(di, ... , d). Then there is a map ): x) ×

[0, o) x [0,o) x R -- Rd such that

5



i) for 0 < a < t and x E Rd O(,,t,x) is the essentially uniques solution of the

stochastic differential equation

dx, = Xo(x,)dt + X,(t)dwt (2.5)

with z = z.

ii) for each w, 8, t the map 4(w, a, t, x) is C' in x with derivatives of all orders satisfying

stochastic differential equations obtained from (2.5) by formal differentiation.

* iisup E sup IDNOW,,, ,,x)Ii']
zl<R a<U<t

_ C(p, a,t,R,N, di, ... , dk,0, Xols(, , --., IXlIIs(oM )- (2.6)

REMARKS 2.6. Norris proves Theorem 2.5 by induction on j. Write (2.5) as a system

of stochastic differential equations for j = 1, ... , k

dxjt = X0" (x ..... , xt)d + X- (xt...., x )dw

S= x E Rdy. (2.7)

Suppose the result is true for 1 = 1,...,j- 1 and write Xi)(w,a,t, xj)

- x t (4 (w), ... , j-1 (w), xj). Then (2.7) can be written in the form

d--rt o 5(9, t, xt) dt + X (a, t, zj)dw'

and Theorem 2.1 applied. The difficult step is establishing the result for

j = 1. However, this follows by a stopping time argument, which is essentially the

6
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method by Bismut [1]. Using the notation of Theorem 2.1 consider the process V

defined by

x ax, )2

= - V*t 0 (t :)) - x, .,, (z))dt

- V; 8  -(t, es, (z))du4, (2.8)

with V.,5 = I. Then by applying the Ito rule we see d(D.,,t V.,t) = 0, while D,, V,,5 = I,

the d x d identity matrix. Therefore, Vt = D-. By applying Theorem 2.5(iii) to

the system given by equations (2.1), (2.2) and (2.8) we have 1D,,t I = sup ID,,, and
S<ut

]Vo , = sup IV.,,,I are in LP (fl) for all p < co. Finally, for 0 < a < t, recall, by the

uniqueness of the solution of (2.1):

Co't (Xo) = e,,t (Co, (zo)) = .,, (a:), if X 6 to,, (zO). (2.9)

Differentiating (2.9):

Dt = D,,t Do, (2.10)

and

Vot = V, V#, . (2.11)

7
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3. MARTINGALE REPRESENTATION.

Consider a stochastic differential system with coefficients in some set S, as dis-

cussed in Theorem 2.5, and let o,t (x, 0) be its stochastic flow solution. For some T > 0

consider a real valued differentiable function c for which the random variable c(CoT (xo))

and the components of the gradient cq (CoT (Xe)) are integrable. Let Mt be the right

continuous version of the martingale

Then we have the following representation result, (see [4]), whose proof we give for

completeness.

THEOREM 3. 1. For 0 < t < T, MT = Efc(CoT (xo))J + fb'y(a)dw' where

-i(s) = E~cef(eo2 (xo))DoT IF.]Di-, X (s, Co,. (xO)).

PROOF. It is well known that Mt has a representation

M = Mo++J -j(s)dw, (3-1)

for some predictable integrands -yi. Because the process eo (xo) is Markov

Mt = E[c( oT (xo)) JFt]

= E[c( tX (x)) IFt] (3.2)

= Et [c(E,T(X)) ]

= V (t, x), say, where x = eo,j (xo).

[mom L&W8



By Theorem 2.5 and the chain rule C(etT~ (x)) is differentiable, in fact smooth, in z.

The differentiability of E, 1c(etT (x))] in t can be established by writing the backward

equation for et,2 (x), as in Kunita [5]. Consequently, applying the Ito role to V (t, z),

with x = eo~T (xo) we have

V (t, eo,t (xo)) =V(0, xo) +f1 (-a + LV) d

where L X0 y-X k k By the uniqueness of the decompo-
1= j=1l k=1 x

sition of special semimartingales, comparing (3.1) and (3.3), we must have, (as is well

known),

av +LV =

and -1i (s) = 19 Fa o x) i(,es(o) rom (3.2) 19V = Elce (C,T' (x)) D,'I F. Is

by (2. 10) -y, (a) = E [cC (oT2 (zo)) DoT2 I F ]D6, Xi (s, Co,S (x0 )).

COROLLARY 3.2. The result extends immediately to vector (or matrix) functions c

COROLLARY 3.3. Note in particular

c(Co,2' (xo)) = E[c(CoT (xo))I + jEfcef(oT~ (xo))DoT IF.ID6"X 1 (s9, Co,s (zo))dw' (3.4)

LEMMA 3.4. Ft is generated by the set of stochastic integrals of the form fo -y (s, w.)dw,.

where the integrands -ji are smooth functions of.a and w, at time a, with bounded

derivatives of all orders.

9



PROOF. or{wt} is generated by g(wt) for g E Cb'(Rd). If we apply Theorem 3.1 to the

process wi, so wt = x + (wt - w.) where x = w., the Jacobian is the identity I and

E[gw (wt) F] = Eo,z [gw(wt)] = -y(w.)

where -y(w.) = (-y1 (w.), ... , 'y(w,)) = E,.,. [(g.1 (wo.), ... , g.,mn (w,))]. Therefore, g(wt) -

E[g(wt)l + fo -y(w.)dw' where the -ft E C' (Rd). Consequently o(wt) is generated by

stochastic integrals of this form. Allowing the integrands to depend on a we that Ft,

which is generated by w., for s < t, is generated by stochastic integrals of the form

J t-yi s, w.)dw,

where -y, E Cb"([0, oo) x R').

REMARKS 3.5. So far we have considered an n-dimensional Brownian motion w -

(w ,..., w') and a state vector x E Rd. Consider now a larger system: suppose

B = (B 1 , ... , B") is an n-dimensional Brownian motion, defined on a probability space

(0, F, P), which is independent of w. Write {Ft} for the right continuous, complete

filtration generated by B, and {Gt} for the right continuous, complete filtration on

fl x 5 generated by Ft x Ft . Consider a second state vector y E R P and a stochastic

differential system defined on (0 x 0, F x F, P x P) by the equations

dxt = Xo(zt,yg)d t + Xi(zg,yt)dwt + .X,(zt,yt)dBj

dyt = Yo(yt)dt + Y (yt)dBj' (3.5)

with (x(O),y(0)) = (xo, ,o) E Rd x RP. We shall suppose the coefficient vector fields

X0 ... , Xm, Yo, ... , Yn are such that the coefficients of (3.5) belong to the space S,

10
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so that Theorem 2.5 can be applied. Note that in (3.5) the process y, is not influenced

by the process x.

NOTATION 3.6. Suppose (z,Y) E Rd x RP is the state of the system (3.5) at time ..

We shall denote the solution flow of (3.5) for t>,s by the map

The Jacobian of this map looks like

( 8(z..t (Z,Y]) - (z..t (Z,Y))

09.. (u) ( ,Y) *t y) za (3.6)

14 Write D,,t (x, y) fo h partial Jacoiax a X.--- Y). The existence of the large Ja-

cobian, and, therefore, of its components, including Dt is given by Theorem 2.5.

As in (21, we now introduce a new measure on (f) x 0i, F X P) by a Girsanov

change of density.

NOTATION 3.7. Suppose h(z, Y,) = (h1 (z, y), V., L (x, y)) is a smooth function in

Coo (Rd+p , Rn) with bounded derivatives of all orders. Define the real valued process

L on Oxfix [0,00)2 x Rd x 1 by

L8,, (x, y) = exp{ j i h(x. (z,y), y,,, (y)) dBZj

* ~ 2 hi (xo, (x, y), y,, (y))du}

Then

dLt(, ) ,t xy (j(xt(, ),yt(x11)~
0 37



* with L,, (x, y) = 1, so L is a {Ct} martingale. Furthermore, L0* = sup L0,. is in every
Utst

space LP(f]), 1 < p < oo. Because h is bounded we also have that (L- )* = sup(L-1)

is in every LP (fl), 1 < p < oo. We could consider the flow given by the combinded

system (3.5) and (3.7). However, for the moment note that for 0 <aS < t

Lo,t (xo, yo) =Lo,,.(xo, yo) La,t(x, y) (3.8)

so writing L =Lo,, (xo, yo) we have.

'I9 
L 0 1 ,( x0y

and

o,t = n~o, LSg (X1 Y) + Lo,s , -tD, (3.9)

with a similar equation for -L

DEFINITION 3.8. Define a measure Ph% on (f) x (I, F x P) such that its restriction to

Ct is given by

dPh (w, i~) = Lo,t (xo, yo) dP(w) x dP (Cj).

* Then Girsanov's theorem states:

4 THEOREM 3.9. Under Ph, the process B' is an n-dimensional Brownian motion inde-

pendent of w, where

12



Therefore, under the measure Ph the process (z.,t, ya,t) is the solution of the stochastic

differential equation

dx.,t =Xo(x.A, y.,,t)dt + X,(x.,,tyt)d,,, + kj(x,,ty,,)dB'i

+ Xi, ( .t , yt, )h' (,.t , y.,t )dt

dys,t =Yo(y.,t)dt + Y'(y8,t )dBt' + Y(y,t)h(z.,t,y.,t)dt (3.10)

with (x,,,, Y,,,) = (x, y) E Rd x RP.

REMARKS 3.10. The system (3.9) provides a natural setting in which to discuss fil-

tering, smoothing or prediction problems. The process Zt represents a signal which is

not observed directly. Instead one observes the process yt which is influenced by xt

through the process h(zt,yt). Write {Yt) for the right continuous, complete filtration

generated by y, and Eh for expectation under Ph. The filtering problem discusses

Eh [Xt lYti,

the smoothing problem discusses

E[ZtLIYT], where t < T,

and the prediction problem discusses

Eh[Zt YT], where t > T.

In this paper, using the techniques of the Malliavin calculus , we show in the filtering,

smoothing and prediction cases, that the conditional distribution of zt has a smooth

density.

13



4. INTEGRATION BY PARTS

Suppose 0 < t < T and let UOr (i) be an FT measurable random variable of the

form discussed in Lemma 3.4, that is

UoT (o= 1 (s, B,)dB, (4.1)

where -'y E GC' ([0, oo) x R ' for 1 <j < n. Consider the system given by (3.5), (3.7)

and (4.1) on ( x , F x F, P x.P):

dt= Xo(z.t, ys.t)dt + Xi(x.,t, y,gt)dw4 + X,(a.,t, yA)dBi

dy,,t = Yo(y#4)dt + Yi(y.,g)dBj (4.2)

dL,,t = Ls, hi (zS,t , Yst )dBt

dU,,t = -y(t, Bt) dB~t

Then Theorem 2.5,with (z.,. ,y.. ,L.A ,U.,) = (x,y, 1,0), can be applied to (4.2) and

we can consider the associated stochastic flow. Note U.,t does not involve z,y, or L,

and if U0,8 = U then

Uo,t = U +j- (s,B.)dBi. (4.3)

Also, if L = Lo,,, from (3.8)

Lo,t = LL4,, (a, yl). (4.4)

THEOREM 4.1. Suppose 0 < t < T and let c be a C' function on Rd with bounded

derivatives of all orders. Then for any square integrable predictable process u(s) =

14



(1 (,a), UM (,))

JT
E[UoT Lo c(xot (zo, yo)) 1Tu()dw,

= E[UoT LoTc C(zo,t(zo,yo))Do,t] Do X(s)u, (s)ds]
i=1

+ L T jD X(a)u(s)dsj+ E Uo Loxi c(0o, (X0, o)) -L° DT X )

o' 1O T, i DX,(s)u ,s)ds]. (4.5)
i=1 0 .CX

PROOF. First recall the derivation of Theorem 3.1 and write for 0 < s < t < T

V (s, z, y, L, U) = E[UoT LoT (zo, yo)c(xo (zo,v o))IGo]

= E[(U + UaT)LL °,T (z, y )c(za,t (z, y ))1G . ] (4.6)

= E,z,yru I(U + U*,i)LL#,T (z,y)c(z.. (.s,y))].

The martingale representation result is obtained by writing down the Ito formula for V,

and the derivatives of V are found by differentiating the conditional expectation (4.5)

in x, y, L and U. Note that for s > t the derivative of c(zxg (z, y)) in z is zero. We,

15
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therefore, have

UO,T LOT~ (x0 , yo)c(xo,1 (xo, yo)) = E[UoX LoT(o, o)c(ot(zo, yo))]

+ f' E[Uo,2 LoT c (xo~t (xo, yo))Do~t JG.]D ' (Xidv' + iidBi)

+ ft E[UoTi LOT~ cz(O (xo z, ito))I a9(z. (X, it)) IG.IYdBi
Jo C3ly

+ foTE[UoT L,.T c(xo~t (X0 I Y) IG.JhMdB~j

+ TE[UoT L,T (x,Y)c(xoA (xo,syo))G.(Xjdwi + idBj)

+f JT[U L L.T (x,Y)c(xot (xo,yo))IGJYdBj

+ jT EIU,Tr L01T c(xotg (xo,yo))IG.jyjdBj.(47

Taking the product of (4.7) with f0T u,(s)dws4, because w and B are independent under

P x P, we have IT
E[Uo,Tr LoT c(xo,t) U,(a)dw']

M ~t
=ZE1UoT~ LrgT Cz (ot) )Do,t D~ Xd.s)u,(a)da]

in T

+ ZE[UoTLc~oAg) f " (z1Y)X(a)d8.j (4.8)

* From (3.9) L DZ- - - 7dL (x, y) D6!. Substituting in (4.8) the result

follows.

NOTATION 4.2. Write * for the transpose. Furthermore write ROT2 = f0T(D6,.X(sl'dw,'

=o, ?flT L6, 'Los D, ,X,(.s)X(s) (D6,.)'d- and recall the Malliavin matrix, fil,

141, (which here is a 'partial' Malliavin matrix in the Xi vector fields):

16



COROLLARY 4.3. We then have the special case of Theorem 4.1 obtained by taking

Us (s) = (- i()

EIUoT LoT c(zo,t )RoT] = E[Uor LoT cz (zo,t )Dot Mo,t]

+E[UoTLor c(zotg)- o MOT]. (4.9)

- EIUo3 Lo3T c(zo,t)AoT.I

COROLLARY 4.4. Equation (4.9) is still true for vector, (or matrix), functions c.

REMARKS 4.5 The gradient c, of c occurs in only one term, so (4.9) is an

'integration by parts' formula. Suppose g is a second smooth function with bounded

derivatives of all orders. Applying (4.9) to the product c(zot )g(zot) we have

E[UoT LoT1 c(xo )g(xot )R,T ]

= E[Uo3 Lo3" (cz(zot)g(zotg) + c(zo;t)g(zo g))Dot Mot]

+ E[UoT Lo. LoJ c(zot)g(zog) ]Loi MoT

- E[Uo3r LoT. c(zoA )g(zot )Ao3T1. (4.10)

From Lemma 3.4 the random variables UOT generate FT so (4.10) can be written

E[Lo,Tr c(zot)g(xots)RO,T IFTI

= E[LoT (cz (xo,t)g(zo,t) + c(zo$ )g, (zo;t))Do,t Mo,, IFTJ

+E[Lo3. L' c(o,A)g(xot) -O-o-

,TCxO FTJ

- E[Lo2 c(o,,)g(zot)AoT IFTJ.

17



Under P x P, YT C FT So

E[Lo'T c(zo )g(zot)RoT IYT]

= E[lLo (c (zo,t)g(xog) + c(zog )g2 (zot))Dof Mo,t IYT]

+ EILoT Lj c(zot)g(ot) -LO T IYT]

- E[LoT c(xot )g(zot)AoT IYT].

Now E,[c(xo,gj)g(zote)Ro, IYT] = E[,Tc(zoT )g(zot)ROT IYT](E[Lo IYT) - x • Further-

more, LOT > 0 a.s.; therefore

E[LoT IYt - < oo a.s.

Consequently, dividing by E[LoT IYTI we have

Eh [c(zot )g(zot )Ro, IYT]

= Eh[(cz (zot )g(zot ) + c(zog )gz (zo4 ))Do,t Mo, IYTI

+ EL-k c(xot)g(zotg) 8 ' -OX oIYTI

- Ek(c(zot )g(zot )AoT I YT], (4.11)

where both sides are finite a.s.

With this in mind, to obtain a bound for the conditional expectation EA,[cz(Xot )IYTJ

*@ we would like to take g = M~j D J in (4.11). However, Dot and Mo, involve the past

of the process eoe, Dot and Mot. This difficulty can be circumvented by considering

an enlarged system.

18



NOTATION 4.6. Let 0(°) (w, iDa,t, z, y, L, U) denote the flow associated with the sys-

tem (4.2). Write D(0) for the Jacobian associated with this flow. Note that among

the components of are the 'partial' Jacobian y) = D,,t and the gradient

OL,,t (x, y)Wrt

dx Write

S= -1 Rt* iR C = L -D..L, 22) D - X i( ) X u) ( -) d
A() = A.,t = ft L C (,U

M) = , = A D-' Xi(u)X,(u)X(D )Ddu"

=d~o Ma 8= '
i=1

Then the system

0(1) (,(O), ),R(O),M(O), A( )

is Markov with coefficients in

S(d + p + 2,d + p + 2 + (d + p + 2)2 ,2d+ p + 2 + (d + p+ 2)2 ,2d+ p+ 2 + 2(d + p + 2)2 ,1).

The results of Theorem 2.5 apply to this system and its flow 0(). Note that M,,t is

the predictable quadratic variation of the tensor product of Rt with itself. Write X x)

for the coefficient vector fields of the w i integrals in (1), and D, ) for the Jacobian ofot

0). Also write

R8( = (D 1')' XS() (u))dw'

and M(1 ) for the predictable quadratic variation of the tensor product of R,1 ) with

R(°) which we shall denote by

19



Then define (2) = (0(1), D(), R(I),M)) so 0(2) is a Markov process for which the

stochastic flow results of Theorem 2.5 hold. Proceeding in this way we inductively

define X(") for the coefficient vector fields of the w' integrals in @(,

= (D s)' X$R) (u))dw.

M,() = (R(n) ® Ro) L

and 0,(n+1) - (000n), D(n), R(), M(n).). Write vn for the gradient operator in the com-

ponents of 0(n).

THEOREM 4.7. Suppose c is a bounded C' scalar function on Rd with bounded

derivatives. Let g be a possibly vector, (or matrix), valued function on the state space

of 0(n) such that g((n) (0, t)) and vng(O() (0, t)) are both in some LP(fl). Then

Ek [C(Xo't)g(.0(n) (0, t)) 0 IA0 IyT]

- E/[c. (zot)g(o(n) (0, t))Dot Mog IYT]

+Ek [c(zo4)Vg(4(") (0, t))D( )  IYT
+ E(LI .c(ZoA)g(o(R) (o,t)) a!9L -Mo IE k ' a z o M o x IY T I

- Ehjc(zo)g(0() (O,t))AoX IYTI.

PROOF. The result follows by applying to the system O(") the techniques used to derive

(4.11).
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REMARKS 4.8. Theorem 2.5 implies sup ID'n', sup IMO'n'k sup sunoo. r
&<t 8<t S<t 8t

in LP (0 x l, P x P) for all 1 < p < o0 and, therfore, finite a.s. . We have already

noted that

sup ID-1I and supL-1
_< O' <t s

are in every LP (f x l, P x ),1 < p < oo. To write out the above result in terms of

Do,t , -t-- and higher derivatives involves very involved cakcuations. Even in the one

dimensional case it seems better to introduce the sequence of flows 001). Theorem 4.7

can again be thought of as giving a conditional 'integration by parts' formula for c..

COROLLARY 4.9. If MjT is in some LP (fl x 0l,PI,) taking g(,(1) (0, t)) -- 1~ D-1 in

Theorem 4.7 we have

Ek~c,(xo,t)IYTI = Ehc(xo,t)Mv-J -D-) oRo~ IYTI

-EAp[c(z-ot)('7ig)(Dot,MoA)D4')M~l) I

O~ tI YT

E&I(c(xotg)A47j D;7 A0,,T IYT

Because the remaining terms are integrable and, therefore, finite a.s. we have proved

the following result:

THEOREM 4.10. Suppose PI, is the probability measure of Definition 3.8 and (ZO, lo,t)

is the solution under Ph of (3.10). Let c be a smooth function with bounded derivatives

of all orders. Then if MT is in some L'(f) x(fI, Ph)

IEkz2(zo0e)yTII K(y) sup Ic(x)I (4.12)
2ERM
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where K(y) is YT-measurable and finite a.s.

REMARKS 4.11. Condition (4.12) implies that the random variable zo,t (z0 , yo) has a

conditional density given YT, d(x), z E Rd for almost all y. (See Malliavin [61 or Zakai

[9]). Now for any a < T

Y, C YT.

so by Jensen's inequality, from (4.12)

IE[c,(zot)lYJI K'(y) sup Ic(x)l. (4.13)

zERd

Equation (4.13) holds for a < t or s > t so the prediction, filtering and smoothing

problems for the random variable z 01 (z 0 , yo) all have a density for almost all y.

The remaining question concerns the existence and integrability properties of

MjT. These have been carefully studied, see Bismut [1], Malliavin 161 and Stroock

[8]. For (x, y) E Rd x RP write TiV for the vector subspace of Rd generated by the

vector fields Xl(z,y),..., Xm (z,y), and the Lie brackets of X(z,y),..., Xm (z,y) and

K1 (z,y), ... X,(x,y), where each bracket contains at least one of the vector fields

X(z,y), ... ,Xm(Z,yi). Then in Theorem 1.19 of [2] Bismut and Michel show that for

all T > 0, MjT is in L'(01 x f,PA) for all 1 < p < oo if the following condition H of

H6rmander is satisfied:

H : T.oVo is equal to the whole of Rd.

As Bismut [1] observes, if H is satisfied at (zo, y) then it is satisfied in some neigh-

bourhood of (z0 , y10). Condition H is a local statement and translates immediately to

diffusions defined on manifolds.
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Finally recall that if u is a non-singular linear map of Rd to itself, then the map

4,U - U-1 has a derivative 0,'(u) which is a linear map on the space of linear maps of

Rd to itself given by 4/(u) -h =-u-1.h-u-1 . Applying this to g(Do,t ,Mo,t) =M6, Dj

we have

El, cz (o,g)YT] =j E[c (xotM~DJ o IYTI

-Eh [c(xo~t) "I~ ((VI Mot) )(D"') M( )M6,-1 D YT

- EhIc(2zo4 )- D.J ((viDo,t )(D(i' Ml) )D 7jIYT

- Ej, [c(xot)L-. Mj-1 D~j CILOI2 M,t IYTI

+ El, [ c (xot ) Mjt D , AOT I YT] (4.14)
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5. BOUNDS FOR HIGHER DERIVATIVES

To show the conditional density of z04 is differentiable, in the prediction, filtering

and smoothing situations, we shall obtain bounds for higher derivatives of the form:

IE[---(xot)IYT]I < K(y) sup Ic(x)i. (5.1)

where 0 < t < T. Here a = (al,... , ad) is a multi-index of non-negative integers and

aa _aaa __k, 4a

YX C z' C I d

Again if 0 <.9 < T then Jensen's inequality applied to (5.1) gives

_< 1 K'(y) sup Ic(x)l. (5.2)
zERd

A well known argument from harmonic analysis, (see [7], or [8]), shows that if (5.2) is

true for all a with ala = al+a 2 + -- +ad <_ n where n > d+I then the random variable

xo,t (zo, yo) has a conditional density d(z) given Y, which is in c n- - 1 (Rd). That is,

we have a differentiable conditional density in the prediction, filtering and smoothing

situations.

To see how to proceed apply Corollary 4.9 to c, in place of c. (If preferred,

Corollary 4.9 could be applied to just one partial derivative in place of c. However,

the result is true for vector functions c). This gives:

Eh[cz(xo,t )IYT = E,[cz(XO,t )M 1 DJ, 0 RoT IYTJ

Et,[ (zot ) (v g) (Do,t , Mo,t )D (1) M(1) YT]

- Eh,[cz (xA)L-lM-i 1 D-1 '9Lor MoT JT
OTI O,t O,t _ ~

+ Eh[cz(zot)M- 1 D- AOT IYT]. (5.3)
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Consider the four terms on the right of (5.3). Each term is of the form

EhtcZ(xo~t)hi((4') (O,t),qS()(0,T))jY~J, i = 112,3,4.

For each such hi consider a function

and apply Theorem 4.7 to c and h, to obtain

Eh fez(xo,t )h (4O(1) (0, t), O(1) (0, T)) IYTI

=Eh[c(xo,t)Xi(O(') (o,t),O(') (0,T)) ® JR(). IYTJ

- Eh(XO,t )(v,, (t)h1) (O(1)(0, i), 4(') (0, T)) Do2t O' ITI

- Eh [c (xo,t ) (V,. (T) Xj) (001) (0, t),.0(1) (0, T)) D. (214IY

+ E&[c(xo,t)h(Ok(1 ) (0,t),,( 1) (O,T))AoT~ IYTJ.

Substituting in (5.3) we obtain an expression on the right which involves only c and

not its derivatives. This procedure can be repeated, using Theorem 4.7. At each stage,

to replace a term of the form Eh[c2 (xo,j)h(O(n) (0, t), 46(n)(0, T)) IYTI by one involving

only c define h = hM6,-D6,t and applying Theorem 4.7. Clearly higher powers of M41

* are introduced at each iteration. However, H6rmander's condition H is sufficient to

ensure that M6,t is in every LP' (0l x f, PI,), 1 < p < oo. We have, therefore, proved the

following result:

25
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THEOREM 5.1. Suppose H6rmander's condition H is satisfied. Then the random vari-

able xo,t (xo,yo), the solution of the signal process, has a conditional density given Y

for almost all y which is in C' (Rd) for s > t and s < t. That is, under condition H

the prediction, filtering and smoothing problems have a smooth density solution.

2

S
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